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We introduce the concept of dispersive aperturing involving a beam truncation by hard-edge apertures
where diameter of the processed beam changes upon frequency. Applied to focused waves, this proce-
dure transforms power spectra at the focal point (and the surroundings). Waveforms at focus conserve
pulse duration but carrier frequency may be altered substantially. In principle, some degrees of freedom
allow carrier-frequency tuning at convenience.
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1. Introduction

Focal waves have been the subject of intense investigation in
past decades [1–4]. With the advent of commercial femtosecond
lasers, broadband focused beams have attracted a great interest
in recent years [5,6]. In the focal region, ultrafast wavefields dem-
onstrate a behaviour that deviates of that observed for time-har-
monic radiation [7,8]. Monochromatic constituents exhibit
different spot sizes involving off-axis red shifts and spectral anom-
alies near phase singularities [9–11]. In the focal point, spectrum is
factorized by a term �i k, where k = x/c denotes the wavenumber
(c is phase velocity in vacuum), leading to the well-known time-
derivative response [12,13].

The above-mentioned phenomena are attributed to nondisper-
sive spatial filtering of broadband wavefields. Aperturing of spher-
ical waves is performed in a way such that the pupil-induced beam
diameter has a constant value. However, we may circumvent this
restriction using glass lenses and, in general, image-forming
elements with dispersive characteristics. Recently, we have
exploited kinoform-type zone plates [14] to compensate chromatic
mismatching of the point spread function (PSF) in the focal plane
[15,16] and also along the optical axis [17]. The essential idea
consists in imaging a hard-edge aperture with the help of highly-
dispersive lenses, constructing a new limiting element with
spectrally-tunable width. Numerical aperture of such focal waves
may vary rapidly upon frequency and, thus, power spectra at focus
are expected also to be altered significantly.
ll rights reserved.
In this paper, we investigate in-focus spectral and temporal
properties of pulsed fields under dispersive aperturing. The paper
is organized as follows. In Section 2, the basic grounds on scalar,
nonparaxial, focal wavefields with apertured spherical wavefronts
are reviewed, giving emphasis to time-domain transformations in-
duced by diffraction. In Section 3 an optical arrangement is re-
ported in order to achieve dispersive aperturing. Anomalous
dispersion is investigated in Section 4 providing red shifts and blue
shifts but, in the meanwhile, maintaining the pulse duration of the
inputs. Finally, in Section 5 the main conclusions are outlined.

2. On-axis diffraction-induced spectral shift

Let us consider a uniform plane wave of (amplitude) spectrum
S(x) collected by a infinity-tube nondispersive microscope objec-
tive. In this paper, we neglect pulse stretching induced by material
dispersion of lenses. In the frequency domain, the focal field under
the sine condition [18,19] is S times the PSF,

hðrÞ ¼ �ik
Z a

0
J0ðkr sin /Þ cos1=2 / sin /d/; ð1Þ

where r = krk, J0 is the Bessel function of the first kind and order 0,
and sina is the numerical aperture of the objective lens (in air). The
focal wavefield is modelled within a scalar regime for simplicity,
which restricts our analysis to low and moderate numerical aper-
tures. In particular, PSF at the focal point reduces to

hð0Þ ¼ �2ik
3
ð1� cos3=2 aÞ; ð2Þ
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which is proportional to the wavenumber. In the paraxial regime
(sina � a) we have an analytical expression of the PSF giving

hpðrÞ ¼
�iaJ1ðkraÞ

r
; ð3Þ

so that on-axis spectrum hp(0) = �ika2/2 is proportional to the
squared numerical aperture.

Some consequences arise from the fact that on-axis spectrum
differs from S by the factor h(0), also called spectral modifier. If
the numerical aperture is conserved for different frequencies,
which is a common assumption for achromatic lens systems,
the spectral modifier is proportional to the frequency and thus
input spectrum is transformed into a focal spectrum / �ixS. In
the time domain, this sort of transformation refers on to a deriv-
ative of the waveform. In Fig. 1a we plot the normalized power
spectrum at focus when (amplitude) inputs are of the Poisson
type,

SðxÞ ¼ S0
x
x0

� �s

exp �sxð Þ; ð4Þ

where S0 and s > 0 are constant parameters, and s = x0s � 1 in order
to have a carrier (mean) envelope x0 ¼ �x derived as

�xðSÞ ¼
R1

0 SðxÞxdxR1
0 SðxÞdx

: ð5Þ

A blue shift 1/s is manifested at focus, computed from the differ-
ence of the mean frequency at focus �x and x0. Along the pulse
duration 2Dt, where

Dt �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s log 2
x0

s
; ð6Þ

however, the observed carrier frequency is unaltered (see Fig. 1).
Moreover, the carrier–envelope phase is shifted by a quarter of a
cycle.

Numerical aperture is determined by the photo-geometric char-
acteristics of the microscope objective. However, we may modify
(decrease) a by inserting a clear aperture of radius R in the mean
path of the impinging plane wave in such a way that

sin a ¼ R
fm
; ð7Þ

where fm is the focal distance of the microscope objective. Assuming
achromaticity of the lens system, hard-edge aperturing imposes
that a remains unaltered at different frequencies. In this paper we
consider using highly-dispersive lenses to alter chromatically the
optical-limiting features of the clear aperture. As a consequence,
we might derive an overall beam truncation diameter 2R varying
upon angular frequency and thus a � a(x).
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Fig. 1. Normalized (a) power spectrum and (b) waveform of input (solid curve) and
focused (dashed-dotted curve) beams. Poisson spectrum is of carrier frequency
x0 = 3.14 fs�1 and parameter s = 30 fs.
3. Dispersive control over aperturing

In Fig. 2 we represent an optical system capable of modifying
chromatically the truncation diameter impinging onto the objec-
tive microscope. This setup follows the architecture of others re-
ported elsewhere [15–17,20]. In the input plane, where we place
a kinoform-type zone plate ZP1 of dispersive focal distance �Zx/
x0, a plane wave of spectrum S enters into the system. Before con-
sidering beam aperturing, the pulsed beam is conveniently dis-
persed by passing through ZP1 and the afocal doublet formed of
achromatic lenses L1 and L2. In the figure, f denotes focal distance
of each achromatic refractive lens. In the aperture plane (x,y), the
illuminating system generates a wavefield

�SMg exp �i
k

2f a
x2 þ y2� �� �

; ð8Þ

where

M ¼ Zx
Zx� ax0

; ð9Þ

fa ¼ a� Zx
x0

; ð10Þ

the real amplitude jgj stands for material absorption of lenses and
efficiency of zone plates, and arg(g) = k L, being L the optical path
length of a light ray traversing the arrangement of lenses, along
the optical axis, from the input plane to the aperture plane; from
hereon we ignore this sort of cumulative terms considering g = 1.
Also, a stands for the distance from the aperture plane to the back
focal plane of L2. The approach given in Eq. (8) is valid if fa is suffi-
ciently longer than the aperture radius within the spectral band jSj
takes significant values (jx �x0j < r). Equivalently, point F in Fig. 2
should be located sufficiently far from the aperture plane in a
broadband around x0. Therefore, cases where a approaches to Z
are excluded in this study.

After illuminating the clear aperture conveniently, the trun-
cated pulse is incident upon a second zone plate ZP2 of focal dis-
tance Zx/x0. Irrespective from the frequency of every spectral
constituent, the target of ZP2 is to generate a plane wavefront of
the dispersed pulse. Following a straightforward calculation, we
may estimate the wavefield at a plane immediately behind ZP2 as

UðrÞ ¼ �ST
r
M

	 

; ð11Þ

where T(r) stands for the amplitude transmittance of the aperture.
This geometric approach applies in the limit k ?1 but gives accu-
rate results if the aperture diameter is significantly larger (by sev-
eral orders of magnitude) than the wavelength 2pc/x0. Finally,
note that the minus sign in Eqs. (8) and (11) represent the Guoy
phase shift originated after focusing at F (see Fig. 2), changing the
carrier–envelope phase of the pulsed beam.

From Eq. (11) we infer that if the field emerging from ZP2 is a
replica of the aperture transmittance magnified by the dispersive
parameter M(x), truncation (given by the radius R) of the wave-
field impinging onto the microscope objective is also spectrally
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Fig. 2. Schematic depiction of the hybrid diffractive–refractive optical system.
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dispersed. Specifically R = R0jM/M0j, where subindex 0 is referred to
values at x0. Considering the sine condition (see Eq. (7)) we finally
have

sinaðxÞ ¼ M
M0

����
���� sin a0: ð12Þ

We point out that an interval of values of the ratio a/Z may lead
magnifications M such that Eq. (12) provides complex solutions
for a. We clarify aspects of this question below.

Let us first investigate dispersive magnification at x �x0. By
means of a series expansion around x0 we may derive

M
M0
� 1þ lx�x0

x0
; ð13Þ

where l = a/(a � Z). In Fig. 3a we plot l versus a/Z. If 0 < a < Z (or
Z < a < 0 for negative ZP2) l is negative and therefore magnification
decreases upon frequency. Consequently, proximity of clear aper-
ture to ZP2 provides numerical apertures following negative disper-
sion. Otherwise magnification shows positive dispersion. In Fig. 3b–
d we plot absolute values of the relative magnification M/M0.
Moderate dispersion, both negative and positive, is shown in Fig. 3b
and c. However, abrupt changes near x0 are found at a approaching
to Z due to a singularity shown in figures at x/x0 = a/Z.

In realistic circumstances, the microscope objective may also
apply an additional aperturing. In the absence of the clear screen,
the numerical aperture of the focused beam, determined by the
objective lens pupils, is provided by sinaob. When the leading aper-
ture is inserted, the hard-edge element dominating beam limiting
determines the numerical aperture of the focal wavefield, com-
puted as min[sina(x), sinaob]. Under such a consideration, com-
plex solutions of a calculated from Eq. (12) are lacking interest.
Moreover, we may speak of a dispersive regime if sina(x) < sinaob

for the bandwidth jx �x0j < r, and a nondispersive regime if si-
na(x) > sinaob. Broadband pulses may partially participate of both
regimes. In this paper, obviously, we focus our attention mainly
onto the dispersive regime.

4. Particular cases

The focusing optical system of Fig. 2 provides a wavefield at fo-
cus of the microscope objective given the product of the input
spectrum and the spectral modifier of Eq. (2),
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Fig. 3. (a) Plot of l with respect to a/Z. (b–d) Study of M/M0 for different values of
a/Z.
Sf ðxÞ ¼
2ikðxÞSðxÞ

3
1� cos3=2 aðxÞ
� 

; ð14Þ

including the Guoy phase shift exp(ip). In the dispersive regime,
numerical aperture is evaluated from Eq. (12) for different constit-
uents of the spectrum S. Waveforms at focus are then computed
using a one-dimensional Fourier transform,

sf ðtÞ ¼ R

Z 1

0
Sf ðxÞ expð�ixtÞdx: ð15Þ

Here we assume S is function allowing a factorization of the form

sf ðtÞ ¼ sinðx0tÞeðtÞ; ð16Þ

where the envelope e(t) varies slowly in comparison with the sine
function. The carrier frequency x0 is computed from Eq. (5) as
the mean frequency �xðSf Þ. We point out that Poisson-type spectra
are of this kind.

The carrier frequency for S commonly differs from that found
for Sf due to the spectral modifier. Blue shifts and red shifts appears
displacing the limiting aperture thus varying the axial distance a.
Obviously, if a = 0, the hybrid diffractive–refractive optical system
is unable to achieve a dispersive aperturing effect since M = M0,
keeping magnification invariant at different frequencies. Only the
term k(x) modifies spectrally the input S thus providing the afore-
mentioned time-derivative effect over the focal waveform.

In Fig. 4 we represent carrier frequencies �xðSf Þ and spectral
widths r(Sf) (standard deviation of x with spectral distribution
Sf) at different displacements of the dispersive pupil aperture.
Complex i in Eq. (14) may be removed in the calculation in order
to manage purely-real nonnegative magnitudes. In the numerical
computation, again, spectrum S is of the Poisson type (normaliza-
tion S0 = 1 is used) with carrier frequency x0 = 3.14 fs�1 and length
s = 30 fs. When we increase a/Z J 0, negative dispersion induces a
red shift that might compensate the inherent blue shift arisen from
the term k. Concretely at a = Z/3, power spectrum resembles that of
the input pulse jSj2 (a convenient normalization is required), with
deviations lower than 0.9%. Consequently, diffraction-induced blue
shifts are cancelled using dispersive aperturing. In the paraxial re-
gime, incidentally, such a dispersive arrangement generates focal
wavefields with achromatic response along the optical axis [17].

Equivalently, an achromatic effect in the transverse focal plane
is attained if a = Z/2 (see also Ref. [16]). The Airy disk of the PSF in
Eq. (3) conserves its width within a narrow band around the carrier
frequency. This effect may be achieved since ka from the argument
of J1 has a stationary point at x = x0 (see Refs. [16,20]); thus
ka � k0a0. As a consequence, the spectral modifier follows a depen-
dence x�1, inducing a time-antiderivative effect over the focal
waveform, as shown in Fig. 5.

Extremal redshift is attained at a/Z = 0.82, obtaining
�x ¼ 2:88 fs�1. From this aperture location up to a/Z = 1.23, where
�x ¼ 3:49 fs�1, a strong spectral shift (from blue to red) may be
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Fig. 4. (a) Carrier frequency �x and (b) spectral width r at focus for different values
of the ratio a/Z. Units are in fs�1. The origin of the y axis corresponds to magnitudes
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tuned. When a approaches to Z the illuminating system focuses F
near the aperture in a band around x0. If the aperture is suffi-
ciently small to neglect beam aperturing of diffractive–refractive
lenses, transmittance varies sharply upon frequency so that the
dispersive arrangement mainly performs a spectral filtering. Fur-
thermore, beam aperturing at the exit plane is significantly weak.
As a consequence, the microscope objective determines beam
aperturing of the impinging quasimonochromatic (see Fig. 4b)
wavefield, a situation that is out of our scope.

Significant blue shifts, however, may be achieved without loss
of bandwidth at a/Z � 1. In Fig. 6a we compare normalized power
spectra jSfj2 at focus placing the clear aperture at different positions
within the dispersive regime. Enhancement of either lower or
higher frequencies than input x0 attributed to dispersive apertur-
ing is performed maintaining the spectral width of the input wave-
field. Therefore, invariant pulse duration is observed at focus
whereas carrier frequency is balanced at will (see Fig. 6b and c).

5. Conclusions

In this paper, dispersive aperturing is established as a tool for
tuning spectra of focused waves. Modification of the beam diame-
ter is spectrally distinctive using kinoform-type zone plates, which
have a strong longitudinal chromatic aberration, as a first step be-
fore a microscope objective focuses light. Our proposal is simple
but, obviously, not unique in order to achieve dispersive apertur-
ing; alternative designs of optical arrangements employing
highly-dispersive refractive lenses may be found (apart from afore-
mentioned cites, see Ref. [21]) with similar spectral features. Here,
the pupil aperture is then displaced conveniently to regulate the
beam limiting and, subsequently, the numerical aperture of the fo-
cused wavefield at different frequencies.

Numerical simulations have been performed using Poisson-type
spectra corresponding to few-cycles optical pulses. We have found
conditions for carrier-frequency tuning at focus at the cost of band-
width narrowing; however, such a spectral filtering is neglected in
this manuscript. Considerable blue and red shifts may be accom-
plished in a wide range of aperture positions keeping unaltered
bandwidths. Pulse reforms at predetermined carrier frequencies
are thus achieved by simply dynamic aperturing.
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